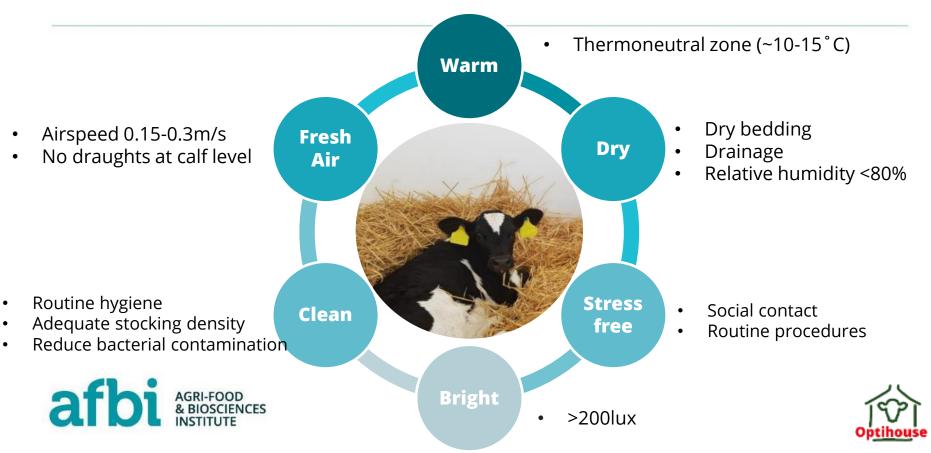
AGRI-FOOD & BIOSCIENCES INSTITUTE

Leading | Protecting | Enhancing

CAFRE CALF AND ENERGY EVENT

Optihouse Project: Optimising the dairy calf rearing environment


Aaron Brown AFBI/QUB PhD Student Gillian Scoley AFBI Dairy Youngstock Researcher

CAFRE Calf and Energy Event January 2023

afbini.gov.uk

What environment does the calf want?

Is temperature alone the problem?

Calves housed at 8°C and 18°C (RH = 65%)

No difference in Calf ADG

(AFBI, 2019)

2x2 Calves housed at 2 temperatures (7°C and 15°C) and 2 relative humidity's (75% and 95%)

Reduced calf ADG at lower temperature only at 95% RH

(Kelly, 1984)

Dampening of the environment increases the effect of low temperature

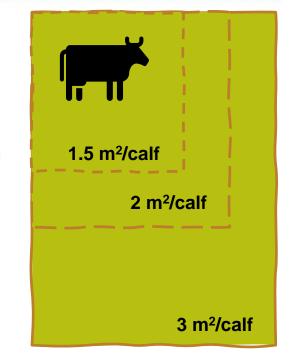
Calf House Design

Material choice

Material	Thermal Conductivity (W/m •K)
Stone	>1.3
Concrete blocks	1.13
Steel	>16
Timber (hardwood)	0.15
Stockboard	0.36
Plastic boarding (HDPE)	0.23
Straw bale	0.09
Tin	>60
Fibre cement	0.48
Heatguard	0.02

Stocking Density

≥1.5 m²/calf

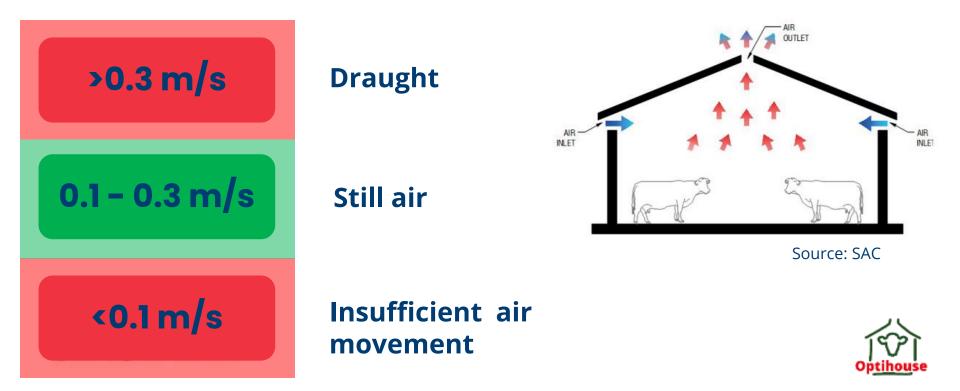

• Minimum legal requirement

≥2 m²/calf

- Associated with increased odds of 'safe' coliform levels in bedding₁
- Increased lying times₂
- Increased calf ADG₃

≥3 m²/calf

Reduced effect on airborne bacterial density₄



1AFBI, 2Tapki 2006, 3Calvo-Lorenzo 2016, 4Nordlund 2019

Ventilation: Controlling Air Movement

Air movement required to remove excess moisture, airborne microbes and harmful gases

Ventilation on Optihouse farms

- > Remove moisture and bring in clean air
- > 90% of calfhouses are 'naturally ventilated'
- Target : fresh air for all calves at all times but without draughts at calf level!
- Outlet area of ~ 0.04m² per calf
- 0% required outlet means that there is nowhere for air to escape

Outlet capacity relative to outlet requirement

% of required outlet area	% of calfhouses	
≥200	15	
100-200	16	
50-75	17	
0-50	11	
0	41	

Calf house environment on Optihouse farms

Environmental Factor	Mean	Maximum	Minimum
Mean temperature (°C)	9.5	14.3	2.7
% time temperature ≤10°C	57.1	96.6	9.1
Mean relative humidity (%)	82.1	92.6	70.7
% time relative humidity ≥80%	64.4	98.7	18.3
% time Airspeed ≥0.4m/s	5.9	35.9	0
Mean pen space allowance (m ² /calf)	2.29	4.93	0.94
Mean bedding dry matter (%)	70.2	86.8	35.5

Take Home Messages

- Manage the rearing environment to maximise feed use and calf development
- Stocking rate is key to making housing work for you and the calves
- Consider design factors to minimise moisture
 - Dry houses have less negative impact on temperature!
- Key environmental factors that impacted growth:
 - Increased number of calves weaned per year on the farm
 - Increased time spent below LCT and increased time with elevated airspeeds in the calf house
 - Reduced bedding dry matter (~100g extra growth with >70% dry matter bedding)
 - Increased proportion of time with elevated airspeeds

AGRI-FOOD & BIOSCIENCES INSTITUTE

Leading | Protecting | Enhancing

CAFRE CALF AND ENERGY EVENT

Optihouse Project: Optimising the dairy calf rearing environment

Aaron Brown AFBI/QUB PhD Student Gillian Scoley AFBI Dairy Youngstock Researcher

CAFRE Calf and Energy Event January 2023

afbini.gov.uk

Calf House Hygiene

Why is calf environment important?

Calf performance and welfare is dependent on the interaction between nutrition, health and the rearing environment.

- Dirty environment exposes the calf to many pathogens
- Stressful environment reduces function of immune system
- Hygiene management key factor in early life

Calf house hygiene: Optihouse results

- Hygiene management requires time-consuming input from farmers
- Important that effort results in clear benefits to animal health and performance alongside improvements in cleanliness
- Aim of this part of the study:
 - Highlight key hygiene practices being undertake for pre-wean calves on NI dairy farms
 - Assess impact of practices on level of bacteria within calf pens, feedstuff and feeding equipment

Calf House Hygiene: Pathogen load detected

Sample type	TVC too high	TCC detected	E.coli detected
Drinking water	91.2	94.0	89.8
Milk/MR	52.1	59.3	14.9
Concentrate Feed	75.9	30.4	5.8
Feeding Equipment	51.8	32.8	8.4
Bedding	22.6	70.4 (9.6% too high)	51.7 (3.0% too high)

Calf house hygiene: Milk Feeding Equipment

Calf House Hygiene: Bedding

Calf House Hygiene: Drinking Water

- Water is an essential part of the diet from birth
- Drinking water goes straight to the rumen and ferments concentrate feed = energy for growth

BUT.....

- Drinking water is very dirty major issue for calf health, particularly enteric disease
- >90% of drinking water samples above target hygiene levels!!!!!!
- Ask yourself would I be happy to drink this??

Take Home Messages


- Do the dishes: Cleaning milk feeders and feeding equipment after each feed lowers the risk of disease transmission
- Minimise Moisture: Dry houses help maintain lower pathogen burdens
- Try and create a drying area off the ground for feeding equipment
- Offer fresh drinking water and concentrate in **clean feeders** from birth
- Develop an SOP for regular cleaning and follow it make it easy to clean!

- Assist in design
- Model impact of features on hygiene, air quality, thermal comfort
- > Explore real calf houses virtually
- > Share plans with advisors
- Coming soon!

