

Planning for Performance

Parasite and winter-feeding strategies for beef and sheep farmers

Welcome – Mark Scott, Head of Beef and Sheep Branch, CAFRE

'The European Agricultural Fund for Rural Development: Europe investing in rural areas'.

Planning for Performance

Parasite and winter-feeding strategies for beef and sheep farmers

Eric Morgan

'The European Agricultural Fund for Rural Development: Europe investing in rural areas'.

EIP - Targeted Selective Treatment for roundworms in sheep and cattle

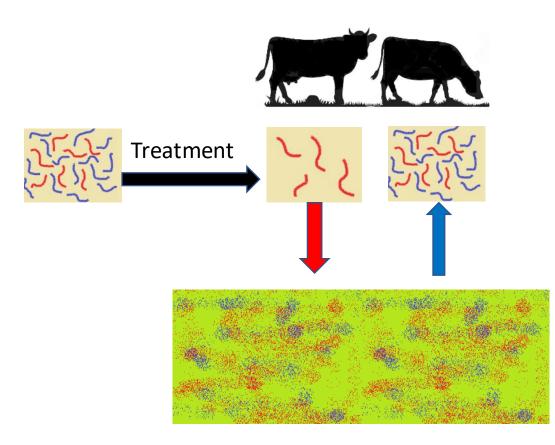
Eric Morgan & Chris McFarland

Worming – why change?

Frequent whole-group worming treatments can lead to:

- 1. Anthelmintic resistance \rightarrow production loss
- 2. Lack of immunity \rightarrow more worming needed
- 3. Ecotoxicity \rightarrow environmental impacts
- 4. Chemical absorption \rightarrow food residues

But stopping use of wormers altogether carries huge risks



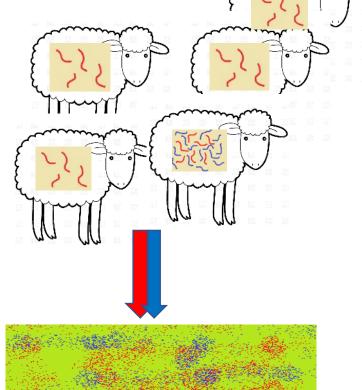
How does wormer resistance develop?

Treating the whole group leads to wormer resistance: only resistant worms survive

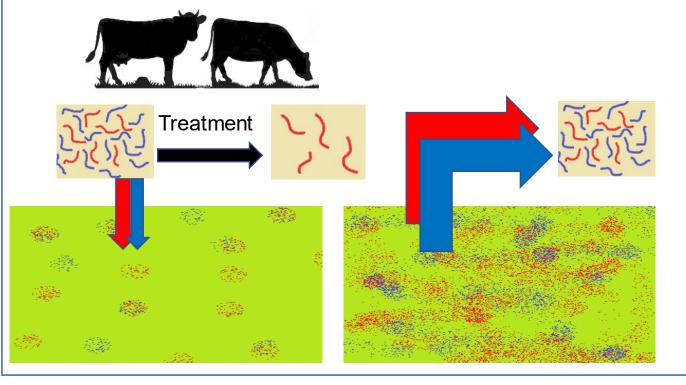
Need to mix these back in with susceptible worms = *refugia*

How can we re-mix susceptible worms?

1. Treatment removes susceptible worms but leaves resistant worms

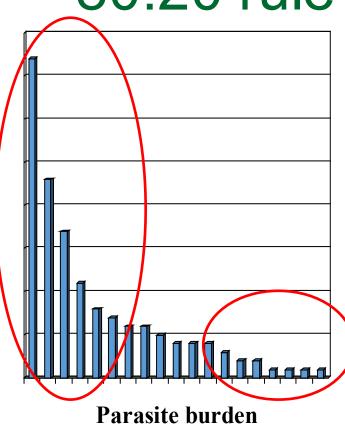

2. Resistant worms produce eggs and contaminate pastures

3. **If** those pastures have received eggs also from susceptible worms, animals will be infected with a mixture of larvae.


This re-mixing will maintain susceptibility.

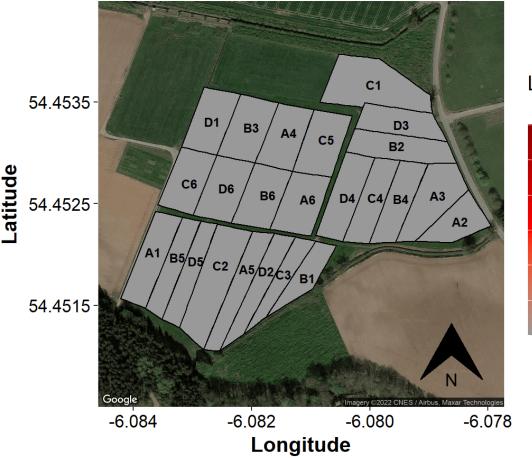
Two ways to generate refugia

1. Leave some individuals untreated: Targeted Selective treatment (TST)


2. Delay treatment until after pasture *refugia* are established: **Targeted Treatment (TT)**

The trick is to do so without risking production loss

Targeted selective treatment (TST) the 80:20 rule


Treatment indicators?

- Worm egg count
- Dag score
- Weight gain
- 'Farmer's eye'

Note early season treatments are usually to protect pasture later...

Targeted treatment (TT) – e.g. delayed dosing

Predicted L3/kg of DM herbage on grazing fields Date:19/04/2019

L3/kg of DM herbage

- Treating early keep pastures clean but end up with no *refugia*
- Delaying a short while gives refugia a chance to establish first
- But implies some risk to future grazing

EIP-TST: Investigate targeted, selective treatment for parasites in ruminant livestock

Project aim: determine the feasibility and practicality of implementing targeted selective treatment of helminths on Northern Ireland commercial farms.

Project summary:

- Bridge the gap between research and implementation, disseminating advice to encourage wider uptake across the sector.
- 7 farmers plus group members from Queen's University Belfast, AgriSearch, AFBI and Animal Health and Welfare NI
 - Determine suitable TST approaches for each participant farm
 - Implement TST approaches on each participant farm
 - Assess the impact of implementing a TST approach

Case study 1 – Farm 1 (Dairy)

- 'Good' and 'risky' practices identified
- Critical control points defined
- Options offered for changes
- Monitoring for risk reduction: Fecpak, plus lungworm at QUB

Option 1: TT – Treatment based on group pooled FEC

Benefits of strategy:

- Promote development of parasite refugia on pasture.
- Reduce total number of anthelmintic treatments.
- Promote development of GIN immunity.
- Reduced handling.

Suggested actions:

- Turn out without treatment.
- Assess group pooled FEC every 2 weeks:
 - FEC 0-100 eggs per gram (epg), don't treat, re-sample 2 weeks later.
 - FEC 100-200 epg, don't treat, but resample group again 5-7 days later.
 - FEC >200 epg, treat whole group (TT).

Possible risks:

- Increased GIN prevalence and increased pasture contamination levels.
- Those not treated will be exposed to lungworm.
- Some condition loss.
- Liver fluke infections.

Reducing risks:

- Consider contamination levels of pastures based on grazing history.
- More frequent FEC sampling or lower epg, thresholds if pasture was heavily grazed last year.
- Weigh individuals every 4 weeks or sooner.
- Regular visual monitoring of whole group.
- QUB collect regular pooled faecal samples for lungworm and fluke testing.
- Treat whole group if lungworm larvae observed in faeces or coughing observed.

Option 2: TST - Treatment based on individual

FEC Benefits of strategy:

- Promote development of parasite refugia on pasture.
- Reduce total number of anthelmintic treatments.
- Promote development of GIN immunity.

Suggested actions:

- Turn out without treatment.
- Assess individual FEC every 2 weeks:
 - FEC <100 epg, don't treat, re-sample 2 weeks later.
 - FEC 100-200 epg, don't treat, but resample again 5-7 days later.
 - FEC >200 epg, apply treatment.

Possible risks:

- Increased GIN prevalence and increased pasture contamination levels.
- Those not treated will be exposed to lungworm.
- Some condition loss.
- Liver fluke infections.

Reducing risks:

- Consider contamination levels of pastures based on grazing history.
- More frequent FEC sampling or lower epg, thresholds if pasture was heavily grazed last year.
- Weigh individuals every 4 weeks or sooner.
- Regular visual monitoring of whole group.
- QUB collect regular pooled faecal samples for lungworm and fluke testing.
- <u>Treat whole group if lungworm larvae observed</u> in faeces or coughing observed.

Option 3: TT + TST – Treatment based on <u>group</u> pooled FECs and DLWG

Benefits of strategy:

- Promote development of parasite refugia on pasture.
- Reduce total number of anthelmintic treatments.
- Promote development of GIN immunity.

Suggested actions:

- Turnout without treatment.
- Assess group pooled FEC every 2 weeks:
 - FEC 0-100 epg, don't treat, re-sample 2 weeks later.
 - FEC >200 epg, treat whole group (TT).
 - FEC 100-200 epg, apply TST on basis of <u>individual</u> DLWG <u>i.e.</u> treat those <u>not</u> meeting desired target weight.

Possible risks:

- Increased GIN prevalence and increased pasture contamination levels.
- Those not treated will be exposed to lungworm.
- Some condition loss.
- Liver fluke infections.

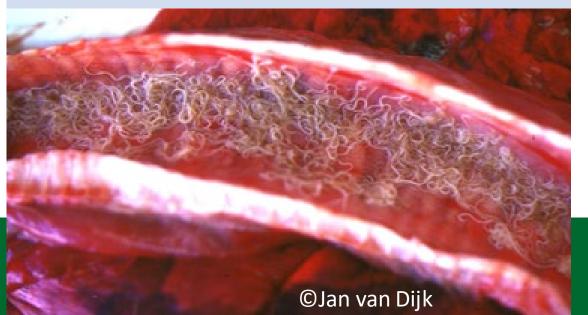
Reducing risks:

- Consider contamination levels of pastures based on grazing history.
- More frequent FEC sampling or lower epg, thresholds if pasture was heavily grazed last year.
- Weigh <u>individuals</u> every 4 weeks or sooner.
- Regular visual monitoring of whole group.
- QUB collect regular pooled faecal samples for lungworm and fluke testing.
- Treat whole group if lungworm larvae observed in faeces or coughing observed.

Case study 1 – Farm 1 (Dairy)

Year 1: 2021

- Tracked 2 batches of cattle under rotational grazing
- New weighing system integrated
- Gastrointestinal nematode faecal egg counts low
 throughout season
 - 13 FECPAK submissions
- First grazing season (FGS) calves dosed twice in 2021 guided by FECPAK and liveweight
- Anthelmintic treatments reduced and delayed
 - *Previous treatment regime:* five weeks post turnout, 4-5 week interval thereafter
 - No fallback in weight gain with reduced treatments


Year 2: 2022

- FECPAK submission of FGS calves on 11/05/2022 showed an egg count of **360 EPG**
 - Grazing same youngstock fields as 2021
 - Decision to treat with ivermectin to reduce pasture contamination
- 18 FECPAK submissions to date
- Weighing every 2-3 weeks
- FGS calves **dosed three times** in 2022 guided by FECPAK and liveweight (**now dosing to weight**)
- Egg counts of second grazing season heifers has remained at 0 - 20 EPG (4 FECPAK timepoints), no dose needed until pre-calving

Case study 2 – Farm 5 (Beef)

Year 1: 2021

- Tracked 3 batches of cattle
- 20 FECPAK submissions (Apr Sep 2021)
 - Used to track individuals (FEC based TT/TST)
- Dung samples sent to QUB for lungworm analysis
- Anthelmintic treatments reduced and delayed but applied when coughing heard in batches

Year 2: 2022

- Tracking 3 batches of cattle
- 12 FECPAK submissions to date
- More regular weighing schedule introduced
- FGS calves treated with albendazole/fenbendazole in early August due to lungworm concerns
- SGS batch 1
 - Individual showed egg count of 320 EPG in mid August combined with group wide **coughing**. Fenbendazole oral drench applied.
- SGS batch 2
 - Individual showed egg count of 200 EPG in early September, **coughing** group wide. Levamisole treatment.

Case study 3 – Farm 6 (Sheep)

Year 1: 2021

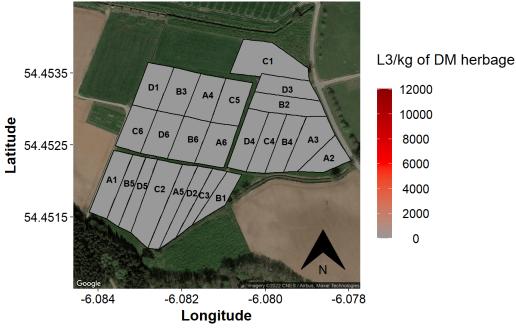
- Tracked 1 batch of lambs in detail
- TST applied on 2 separate occasions based on FECPAK + dag score or DLWG
- 19 FECPAK submissions
- FECs high throughout season
- Zolvix 'break dose' applied mid August
- Anthelmintic treatments maintained at 4 per season

Latest treatment left 29% of lambs untreated, saving worming costs

Year 2: 2022

- 10 FECPAK submissions to date
- No treatment given to ewes at lambing this year
- Anthelmintic treatments provided on a targeted basis using liveweight
 - Treatment applied to lambs growing <200 g / day
- Hosted BDG meeting in July focusing on TST. Video webinar on TT/TST provided by Dr Christopher McFarland for the event
- Challenging year from a grass growth perspective, extra feed required. Growth rates of lambs slower than average – but dry conditions also meant less treatment needed
- · Zolvix once again implemented as a 'break dose'

TST-EIP interim conclusions


- Worm treatments can be targeted effectively on farms
- No one 'protocol' fits all farms or works equally well every year
- Monitoring is crucial to reduce risks but takes some effort
- First steps can be small and without production cost

Next steps?

- Collate treatment, parasite and performance data across EIP farms
- What are the likely savings on wormer use and benefits for resistance development?
- Can practical challenges be surmounted on all farms?
- Where will the advice come from?
- Would spatial refugia be easier to implement on some farms?

Pasture contamination and *refugia* mapping

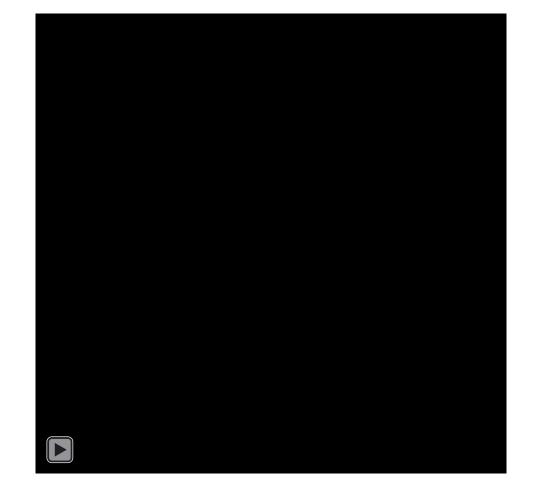
Predicted L3/kg of DM herbage on grazing fields Date:19/04/2019

Planning for Performance

Parasite and winter-feeding strategies for beef and sheep farmers

Paul Crawford

'The European Agricultural Fund for Rural Development: Europe investing in rural areas'.


NI Sheep Scab Programme

- What is sheep scab?
- Sheep Scab Control Group
- DAERA's position
- Limited research
- BBSRC funding

- What is sheep scab?
- Highly infectious
- Debilitating
- No spontaneous recovery
- Economic cost
- Notifiable disease

- Sheep Scab Control Group
- Industry-wide support
- Considered the problem in N. Ireland
- Looked at barriers to better control
- Looked at solutions being developed elsewhere
- Identified a need for research and pilot control projects

- Limited research
 - Wales, Scotland and England well ahead of us on scab control
 - 2021 Survey: 44 farmers described their experiences of sheep scab in their flock

- BBSRC funding
 - Scab group partnered with Moredun Research Institute, AFBI and AHWNI
 - Awarded £220000
 - Project got up and running 2nd August 2022

What can we offer?

- Knowledge transfer and education
 - Farmer meetings
 - Prescriber meetings

What can we offer?

- Knowledge transfer and education
 - Farmer meetings

Accurate diagnosis

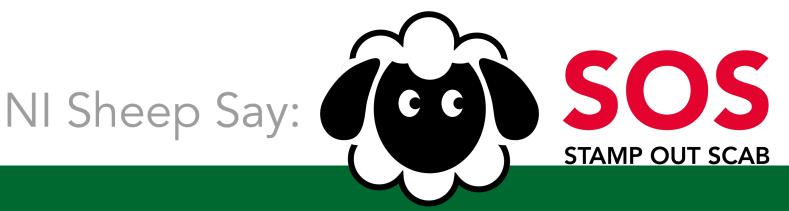
• Prescriber meetings

Effective treatment - <u>NOT showering!</u>

Keeping it out

What can we offer?

- Diagnosis and treatment
 - Your own vet on the farm to blood or skin test the sheep – paid for by the programme
 - Develop a treatment plan if scab confirmed
 - Help with treatment costs included


Why should you participate?

- Your scab problem won't just go away
- Free diagnosis
- Heavily subsidised treatment
- Veterinary advice
- Minimal DAERA intervention

Why should you participate?

- We are also running a survey to find out more about sheep scab in Northern Ireland.
- Give us the information we need to help rid
 N Ireland of sheep scab while we can.

Questions:

Planning for Performance Winter-feeding strategies for beef and sheep farmers

Dominic Mason/Gareth Beacom CAFRE Beef & Sheep Advisers

'The European Agricultural Fund for Rural Development: Europe investing in rural areas'.

The challenges

High input prices

- Concentrate
- Fertiliser

	2021	2022	% change
Beef blend	£270	£360	+33%
Beef Price (U3 steer)	£4.02	£4.37	+ 9%
Lamb Price	£4.90	£5.00	+ 2%

Low D-value/ low dry matter silage

Finishing or growing animals in a cost effective manner

Cost of storing cattle this winter

Assumptions

Weight of calf 1st Oct

300kg

- Average quality silage (12% CP) £35/tonne
- Poor Quality silage (10% CP) -
- Concentrate cost -

- £30/tonne
- £360/tonne

Cost of storing cattle this winter

	Cost/day	Cost for 6 months	Potential weight in April
Silage only diet			
25kg poor quality silage (10%CP)	£0.75	£135	300kg
21kg average quality silage (12%CP)	£0.74	£132	345kg

Silage only diet will also risk affecting the animal's lifetime performance

	Cost/day	Cost for 6 months	Potential weight in April	
Target weight gain of 0.6kg/day				
15kg poor quality silage + 3kg conc	£1.53	£275	408kg	
15kg average quality silage + 2kg conc	£1.25	£224	408kg	

Adding concentrate to the diet will also save on silage

Sell or Keep?

	Cost/day	Cost for 6 months	Potential weight in April	
Target weight gain of 0.6kg/day				
15kg poor quality silage + 3kg conc	£1.53	£275	408kg	
15kg average quality silage + 2kg conc	£1.25	£224	408kg	
Value of calf 1 st October	300kg	£2.80/kg	£840	
Break even price 1 st April	408kg	£2.61/kg	£1064	

Other points to consider

- Approx. 520 gallons of slurry produced per calf
- Cost will depend on silage quality and concentrate levels

Options for Finishing cattle this winter

550kg Beef finishing animal Target growth: 1.2kg average DLWG

Silage Quality	Silage Fed (kg)	Concentrate (kg)	Daily Feed Cost (£/day)
Good	22	4.5	£2.39
Average	20	5.5	£2.68
Poor	15	7	£3.05

Assumptions: Silage £35/tonne, concentrate £360/tonne

Producing high quality silage will lower concentrate requirement, lower feed cost and increase gross margin

	Finishing Budget						-
and the second second	Input		-				
Finishing	Purchase	550	Kg @	2.35	£/kg	£1,293	
	Days on farm	100			_		
Budget	Silage	25	Kg @	35	£/tonne	£88	
	Meal	6.5	Kg @	360	£/tonne	£234	
	Straw	0.0	Kg @	95	£/tonne	-	
	Vet					£10	
	Misc					£ 10	
Have plan in plac	e						
	lotal variable						
Weigh Regularly	Costs					£342	
≻Test Silage	T					C4 C25	
	Total Cost					£1,635	
		Growth					
	Output	(Kg/Day	')	1.20	Kg/d	670	Kg Live
		K.O	,	57%			Kg carca
		Price		4.37	£/kg	£1,669	-
	Margin					£34.34	

Finishing lambs this autumn/winter

Beware of fleshing levels on lambs

Massive variations in KO% of lambs

Grade	LWT	КО	DWT	p/kg	Total price
R3	47kg	43%	20.2kg	£5.00	£101.05
R1	47kg	39%	18.3kg	£4.60	£84.32

Factors affecting the kill out of lambs

- > Diet
- Fat cover
- Breed
- ≻ Sex
- > Extremities on lambs, i.e. tails, horns, wool etc

Options for finishing lambs this autumn/winter

Assumptions

Conc price - £380/tonne

Lamb grazing – 10p/day

	DLWG	Days to gain 6 kg	Grazing cost	Conc cost	Total cost		
42kg lamb	100g/day	60 days	£6.00	£0.00	£6.00		
Grass + 0.5kg meal/day (20p/day)							
42kg lamb	225g/day	27 days	£2.70	£5.13	£7.83		

Cost of feeding 0.5kg of meal @ £380/tonne = £1.33/week

Intensive finishing for lambs?

Typical FCR 8kg of meal for 1kg liveweight gain

Meal

8kg @ £380/tonne = £3.04

Lamb

1kg liveweight @ 48%KO = 0.48kg carcass

0.48kg carcass @ £5 = £2.40

Cost 8:1 = £3.04

Return = £2.40

Break even price @ FCR of 8:1 = £6.33/kg

Options for finishing lambs this autumn/winter

Assumptions

Conc price - £380/tonne

Lamb grazing – 10p/day

	DLWG	Days to gain 6 kg	Grazing cost	Conc cost	Total cost		
42kg lamb	100g/day	60 days	£6.00	£0.00	£6.00		
Grass + 0.5kg meal/day (20p/day)							
42kg lamb	225g/day	27 days	£2.70	£5.13	£7.83		

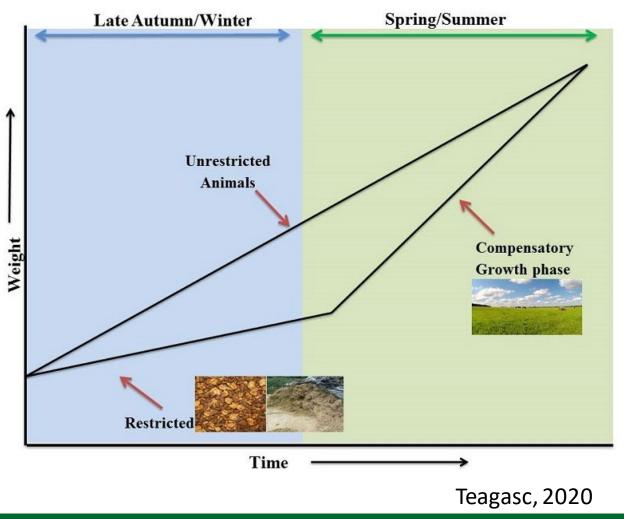
Cost of feeding 0.5kg of meal @ £380/tonne = £1.33/week

Summary

- Concentrate supplementation still needed must be cost effective
 - Over feeding may not be economically viable
 - Under feeding may affect animal lifetime performance
- Have a performance target in place for youngstock
 - As well as finishing budget

- Monitor animal performance regularly
 - Maintain animal health plan

Long-term implications of changing the nutrition of cattle on lifetime performance Dr Francis Lively



'The European Agricultural Fund for Rural Development: Europe investing in rural areas'.

Compensatory growth

 Compensatory growth is a process where if growth is less than normal due to undernutrition, then later when good nutrition is available the live weight gain is greater than would otherwise be expected

Study 1: Implications of reducing performance during the first winter growth period (100 day finishing period)

Winter 1 concentrate feed level	0		1.5		3.8
Silage dry matter intake (kg)	4.64		4.44		3.76
Live weight gain (kg/day)	0.3		0.7		1.04
Turnout live weight (kg)	313	+42	355	+36	391
Housing live weight (kg)	477	+16	493	+16	509
Final live weight (kg)	576	+18	594	+11	605

• Reducing LWG from 0.7 to 0.3 kg/day had long term performance reductions

Study 2: Implications of reducing performance during the first winter growth period (140 day finishing period)

	First winter growth phase concentrate input (kg/day)				
	0.5		2.0		
Second winter finishing phase concentrate input (kg/day)	4		4		
First winter live weight gain(kg/day)	0.33		0.68		
Second winter live weight gain (kg/day)	0.82		0.86		
Lifetime live weight gain (kg/day)	0.70		0.74		
Carcass weight (kg)	343		354		

 Reducing first winter LWG to 0.3 kg/day had a long-term impact on performance – subsequent nutrition was not high enough to allow for full compensation

Study 2: Implications of reducing performance during the first winter growth period (140 day finishing period)

	First winter growth phase concentrate input (kg/day)					
		0.5		2.0		
Second winter finishing phase concentrate input (kg/day)		Ad libitum		Ad libitum		
First winter live weight gain(kg/day)		0.27		0.66		
Second winter live weight gain (kg/day)		1.25		1.13		
Lifetime live weight gain (kg/day)		0.81		0.82		
Carcass weight (kg)		377		377		

• Reducing first winter LWG to 0.3 kg/day had no long-term impact on performance as a high plane of nutrition offered during the finishing period

Study 2: Implications of reducing performance during the first winter growth period (140 day finishing period)

	First winter growth phase concentrate input (kg/day)						
	0.5	0.5	2.0	2.0			
Second winter finishing phase concentrate input (kg/day)	4	Ad libitum	4	Ad libitum			
First winter live weight gain(kg/day)	0.33	0.27	0.68	0.66			
Second winter live weight gain (kg/day)	0.82	1.25	0.86	1.13			
Lifetime live weight gain (kg/day)	0.70	0.81	0.74	0.82			
Carcass weight (kg)	343	377	354	377			

• If reducing performance during one period of life it is essential to offer a high plane of nutrition in subsequent growth phases

Maximise days at grass – store cattle

 Spring grass is highly nutritious and, evidence demonstrates improved performance from livestock

Autumn grass is as high a
quality feedstuff as many
silages

	Early turn out	Late turn out	Difference
Date turned out	5 April	22 April	+17 days
Housing live weight (kg)	538	515	+23 kg
Slaughter live weight (kg)	674	666	+8 kg
Carcass weight (kg)	373	368	+5 kg

	Early housed	Late housed	Difference
Housing date	29 Oct	23 Jan	+ 86 days
29 Oct weight (kg) (weaning)	228	228	
23 Jan weight(kg)	294	300	-6 kg
28 Feb weight (kg) (turnout)	339	339	

 Spring and autumn grass is highly nutritious and can reduce both silage & concentrate inputs and slurry production – provided ground conditions suitable

Feeding cattle at grass

- Cattle were offered 0 or 2.5 kg concentrate from 1 August until housing
- Know your costs!!!

Study 2: Short finishing period

Study 3: Long finishing period

	0	2.5	Difference		0	2.5	Difference
Live weight (kg)				Live weight (kg)			
Housing	494	532	+38	Housing	517	536	+19
Slaughter weight	591	615	+24	Slaughter weight	671	669	-2
Carcass weight (kg)	322	334	+12	Carcass weight (kg)	369	372	+3

 Feeding cattle at grass increases live weight gain during that period but no benefit if housing for a finishing > 100 days

Stocking rate

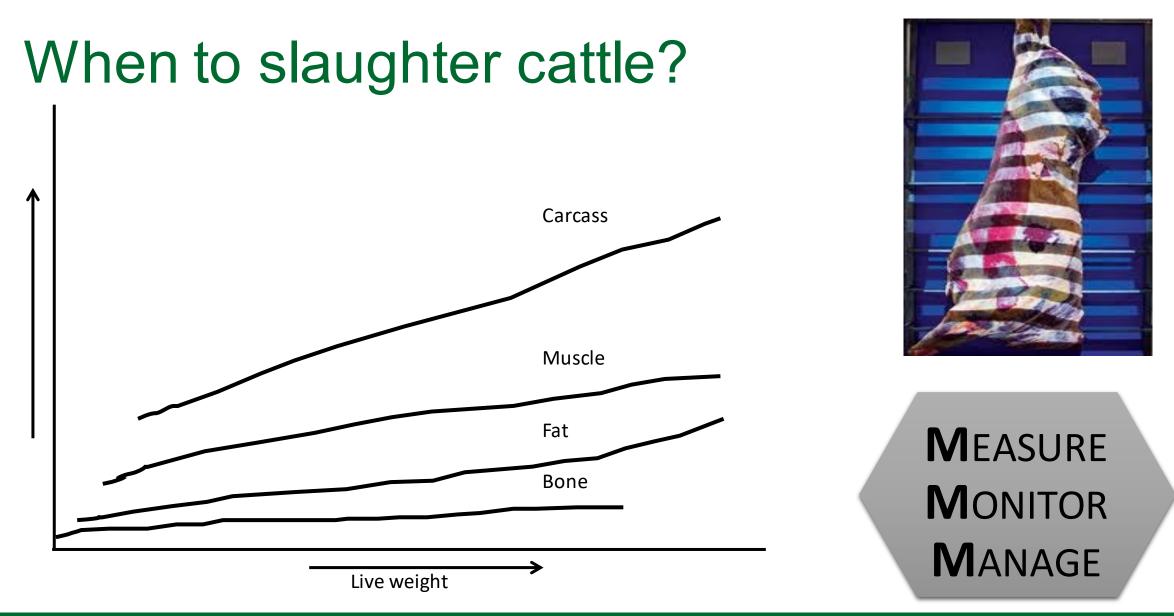
- High vs low stocking rate
- Rotation grazing system

Short finishing period

	High	Low	Difference
Turnout live weight (kg)	364	364	
Housing live weight (kg)	497	529	-32
Slaughter live weight (kg)	591	614	-23
Carcass weight (kg)	321	335	-14

Long finishing period

	High	Low	Difference
Turnout live weight (kg)	360	360	
Housing live weight (kg)	508	545	-37
Slaughter live weight (kg)	662	667	-5
Carcass weight (kg)	365	376	-11


• Increasing the stocking rate reduces grass availability and reduces performance which does not fully recover during the finishing phase

Impact of reducing nitrogen application

- Reducing nitrogen levels will reduce grass production
- Reducing grass availability will reduce potential live weight gain per hectare
- If planning to reduce nitrogen levels plan to reduce stocking rate
- Applications at peak growth will maximize return in investment

• If changing fertiliser management consider impact on the carrying capacity on the farm

• Monitor animal performance, production cost and slaughter when suitable fat cover

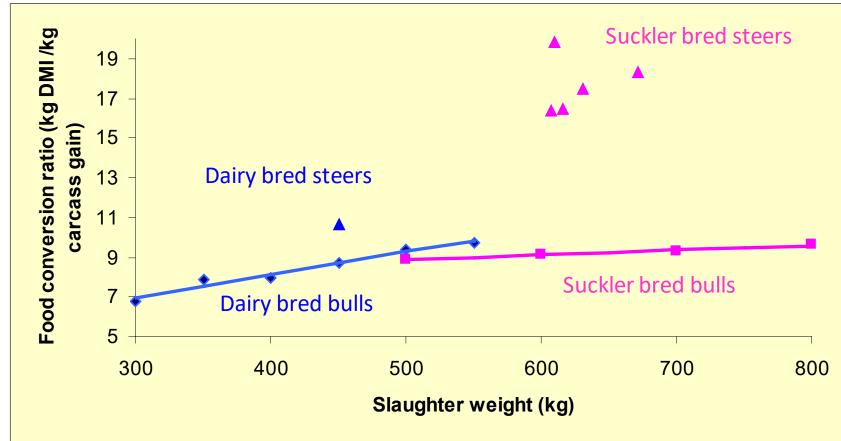
When to slaughter? Breed type dependent

Continental genetics (late maturing)

- Larger heavier animals
- Heavily muscled
- High growth potential
- Leaner

Native genetics (early maturing)

- Smaller lighter animals
- Lower growth potential
- Fatter


Dairy genetics

- Larger digestive tract
- High bone content
- High growth potential

Significant within breed variation

The effect of slaughter weight, breed type and gender on feed conversion ration

- As cattle increase in live weight feed conversion efficiency declines
- Dairy bred cattle are less efficient converters of feed to carcass gain than suckler bred cattle
- Bulls are more efficient converters of feed to carcass gain than steers

• Monitor animal performance, production cost and slaughter when suitable fat cover

Take homes

- Compensatory growth can be used to reduce concentrate levels during one period of early life without impacting on lifetime performance provided a high plane of nutrition follows
- Autumn and spring grass can be utilized to reduce reliance on concentrates & silage for young cattle/weanlings
- Feeding concentrate at grass will boost performance but at a cost, only consider if having a short finishing period
- Reducing nitrogen application will reduce grass production & impact on stocking rate
- Monitor performance of finishing cattle relative to production cost