Take home messages

- ✓ Costs of milk production have risen significantly. Measure your costs.
- ✓ Monitor feed efficiency and use MOC.
- ✓ Well managed grass is the cheapest feed for dairy cows.
- ✓ Effective nutrient management planning will reduce fertiliser costs.
- ✓ Clover has potential to reduce fertiliser inputs.

For further information please contact your local Dairy Adviser or:

Knowledge Transfer Administration CAFRE Greenmount Campus 45 Tirgracy Road Muckamore ANTRIM BT41 4PS

Telephone: (028) 9442 6716 Email: kt.admin@daera-ni.gov.uk

Challenges and Opportunities for your Dairy Farm

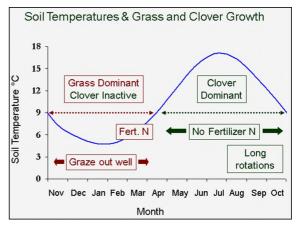
Philip Kyle 14 Carnteel Road, Auchnacloy

Tuesday 14th June 2022

Farm Profile

Family run farm with an emphasis on maximising milk production from grazed grass and forage

Area farmed	79 ha – all grass farm				
Stock	90 dairy cows (Hol/Fr) – also Shorthorn,				
	Montbéliarde, Br Friesian and Fleckvieh				
	breeding				
	20 heifers reared annually – 24 month calving				
	All beef bred calves reared and sold at 15				
	months old				
Calving Index	372 days (20% replacement rate)				
Technologies	Auto ID, Feed to yield, Out of parlour feeders				
	Automatic calf feeding, grass measuring				
Labour	Philip, his father Adrian, mother Lorna and wife				
	Victoria. Complete their own machinery work.				
Recording	CAFRE Benchmarking, £MOC, Agrinet				


Current rolling annual performance

Milk yield	8,060 litres (Milk sold to Lakeland)		
Milk from forage	3405 litres		
Milk composition	Butterfat 4.06%		
	Protein 3.31%		
Concentrate fed	2.094 tonnes/cow		
	0.26 kg / litre		
Margin over concentrates	£ 2,100 /cow		

Reseeding and Clover

- Reseeding pays dividends
- Select poorest performing fields to reseed
- Soil analysis essential before reseeding
- Consider alternatives (conventional reseeding, regeneration, rejuvenation) to ploughing.
- A grass/clover sward fertilised with 50 kg N/ha can sustain a similar output to that from a grass sward fertilised with 200 kg N/ha. Therefore, clover can reduce the costs by £255/ha (save 150kg N/ha, urea at £780/t).
- High protein, high ME feed. Highly digestible and can drive intakes and performance.
- Clover content of 30% needed to fix enough N to replace chemical fertiliser.
- Distribution of the clover throughout sward is equally important.
- Management, soil type and proper plant nutrition will influence clover performance, persistency, N fixation and DM yield.

The diagram below shows the interaction between grass and clover growth.

Forage and Costs

Maximise and utilise stocks of quality forage on your farm

Production cost (\pounds/tDM) ratio of grazed grass compared to other feeds

	Grazed grass		4 cut grass silage	Concentrate (£370/ t)	
Ratio	1.0	1.9	2.2	4.0	

Impact of Silage Quality of later cutting

		Cutting delayed by 2 weeks
D-value	72	66
ME(MJ/kgDM)	11.5	10.6
Silage intake (kg DM/ cow/ day)	11.6	10.1
Concentrate (kg/ cow/ day) for cow yielding 30 l/ cow/ day	8.5	10.9

43 t extra concentrate required to feed 100 cows over 6 months

Taking action

- Assess existing silage stocks
- Implement a nutrient management plan (target slurry applications)
- Assess grass quality before cutting later
- Achieve an effective wilt (25 30 % DW 24 hours)
- Minimise in silo losses
- Assess silage quality
- Develop a feed plan

Grazing Management

- Walk the farm and assess how much grass you have
- Increasing grazed grass in the diet should be viewed in the same way as setting up a winter ration – assess grass weekly so you can accurately determine how much supplementation is needed throughout the season.
- Ideally, you want all your fields at different stages of grass growth.
- Grass should be grazed at the 2.5 to 3-leaf stage for maximum efficiency
- Pro-active management minimise grass wastage
- Make use of technology to make life easier Agrinet, rising platemeters, GPS, online calculators (https://www.daera-ni.gov.uk/services/daera-online-services)
- Still cost effective to sow regular fertiliser, especially through the good growth period.
- Grazing covers of 3000kg/DM down to 1700kg/DM.

Milk from forage targets

Target Milk from Forage (I/cow/day)

	Cows	Heifers
June	18	14
July	16	12
August	14	10
Sept	12	8

Soil and Soil Health

- A healthy soil looks good, feels good and smells good
- Monitoring of soil health is required to better manage and protect your soils.
- In the long term, improving soil health will cut costs, improve efficiencies and increase productivity.

Indicators of soil health

- pH and nutrient availability Soil structure
- Level of compaction Soil biology

Importance of lime

Optimum performance pH is 6.0-6.5 in mineral soils and 5.3-5.8 in peaty soils

Soil P and K Indexes: What do they mean?

Soil Index		What the index means			
0	Deficient	Risk to production- requires slurry and/or fertiliser			
1	Low	Likely to limit production. Requires slurry and/or fertiliser			
2-	Optimum	Continue with usual slurry and fertiliser policy			
2+	Optimum	Continue with usual slurry and fertiliser policy			
3	High	No yield response			
4+	Excessive	Risk to environment			

 For P index 3 and above soils redistribute slurry to more suitable fields and use zero P fertilisers

What is in slurry?

Available nutrients (Spring Application, using LESSE on a P Index 2- soil)							
		kg@11m³/ha			Units @1000gal/ac		
	DM %	N	Р	K	N	Р	K
Cattle Slurry	6	11.4	13.2	24.8	9.2	10.6	19.8

- Use Low emission Slurry Spreading Equipment (LESSE)
- Apply organic manures and chemical fertilisers to match dry matter yield

Production Costs

- Based on CAFRE 2020/21, financial benchmarking data concentrates and forage account for 67% of total variable costs.
- In 2020/21, the average concentrate cost on farms benchmarked was £258/t and fertiliser cost was £230/t.
- An average increase of £50/t for concentrate equates to an increase in variable costs of approximately 1.61ppl.
- Each £100/t increase in fertiliser cost equates to an increase in variable costs of approximately 0.75ppl.
- In 2020/21, the top 25% of Dairy farmers used more feed and fertiliser but also achieved higher output, offsetting the additional feed and forage costs through better feed efficiency.
- CAFRE Benchmarking shows the difference in cost of production between top 25% and bottom 25% of dairy farms is 8.55ppl.

What is your cost of production?

- Benchmarking / Margin over Concentrates
 - Measure to Manage
 - www.cafre.ac.uk/CAFREcashflow \geq